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Summary

An experimental study of a generic high-speed
civil transport has been conducted in the NASA

Langley 8-Foot Transonic Pressure Tunnel. The data

base was obtained for the purpose of assessing the

accuracy of various levels of computational analy-

sis. Two models differing only in wingtip geometry

were tested with and without flow-through nacelles.

The baseline model has a curved or crescent wingtip
shape, while the second model has a more conven-

tional straight wingtip shape. The study was con-
ducted at Maeh numbers from 0.30 to 1.19. Force

data were obtained on both the straight wingtip

model and the curved wingtip model. Only the
curved wing-tip model was instrumented for mea-

suring pressures. Selected longitudinal and lateral-
directional aerodynamic characteristics of both mod-

els are presented in graphical form. Selected pressure
distributions for the curved wingtip model are also

presented. Results indicate that the straight wingtip
model produced slightly better longitudinal charac-

teristics than the curved wingtip model. Adding
the nacelles to both models also increased lift and

improved pitching-moment characteristics. Lateral-

directional data were essentially the same for both

wingtip configurations. The nacelles also improved
the lateral-directional characteristics of both mod-

els. Pressure data show vortical flow development

and effects of adding nacelles to the curved wingtip
model.

Introduction

Recent studies (refs. 1 and 2) have indicated that

there is a large and growing potential market for a

high-speed civil transport (HSCT). This fact, along

with a number of promising technological advances,
has prompted a number of the aircraft companies
to renew their research efforts for this class of air-

craft. Their interest is reflected in the report of the

Aeronautical Policy Review Committee (ref. 3), in

which the second of three proposed national goals
is the development of the technologies required for

an economically viable and environmentally accept-
able HSCT. In response to this report, NASA has

implemented the High-Speed Research Program. As

part of this program, NASA Langley initiated sev-

eral contractor (refs. 1 and 2) and in-house (refs. 4

and 5) studies to evaluate a variety of configurations

relative to these issues and technologies.

One of these configurations, the NASA Langley
baseline Mach 3.0 aircraft (ref. 5), has been selected

as the focus of the initial phase of the High-Speed

Airframe Integration Research (HiSAIR) program.
This program was established at Langley to promote

the development of methodology for improving multi-

disciplinary analysis, design, and optimization of air-

craft systems. Although an HSCT configuration was

selected for developing this methodology, the result-

ing methods and processes would, in general, apply
to all aircraft.

The first phase of the HiSAIR program involves

performing a multidisciplinary analysis of the base-

line configuration. As part of this effort, a hierarchy
of aerodynamic codes ranging from linear to Navier-

Stokes methods (refs. 6-8) has been used to analyze

this configuration with the goal of comparing the rel-
ative accuracy and efficiency of the different methods.

In order to provide a data base for assessing the accu-

racy of the codes, force, moment, and pressure data

have been obtained in two NASA Langley wind tun-
nels on a 0.01-scale model of the baseline Mach 3.0

configuration. Data at supersonic speeds were taken

in both the high-speed section and the low-speed test

section of the Langley Unitary Plan Wind Tunnel
and have been reported in reference 6. These data

include the primary design point at the cruise Mach

number of 3.0. It is recognized, however, that an

HSCT would probably be restricted to subsonic flight
over land (refs. 1 and 4) and that this could represent

a significant fraction of the total flight time. There-
fore, the baseline Mach 3.0 model was also tested at

subsonic and transonic speeds in the Langley 8-Foot

Transonic Pressure Tunnel (TPT).

The force, moment, and pressure data obtained

during the 8-Foot TPT tests are presented in this

report. The test Mach numbers range from 0.30 to

1.19 at a constant Reynolds number of 2.0 million per
foot. The angle-of-attack range varied with Mach

number because of balance load limits, with the

maximum range of -4 ° to 18 ° occurring at M =
0.30. In addition, lateral-directional data were taken

at selected Mach numbers for sideslip angles ranging
from -7.5 ° to 5° . Force and moment data were

also obtained for an alternate version of the baseline

configuration having straight wingtips.

Symbols

The results presented in this report are referred

to the stability-axis system for the longitudinal aero-

dynamic characteristics and to the body-axis system
for the lateral-directional characteristics. Force and

moment data have been reduced to conventional co-

efficient form based on the geometry of the wing plan-
form. Moments are referenced to the quarter-chord

point of the mean aerodynamic chord of the wing.
All measurements and calculations were made in U.S.

Customary Units.
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Model Description

The baseline, or curved wingtip, model (fig. 1) is

a 0.01-scale version of the NASA Langley Mach 3.0

HSCT configuration described in reference 5 and
is shown installed in the Langley 8-Foot Transonic

Pressure Tunnel in figures 2 and 3. It consists of a

highly blended wing-fuselage with flow-through en-

gine nacelles mounted on the lower surface near and

extending beyond the trailing edge of each wing. The
constant duct area nacelles are removable to allow

wing-body testing and thus simplify grid generation
requirements for computational comparisons. The
inboard and outboard wing panels have leading-edge

sweeps of 79 ° and 53 °, respectively. The inboard o

panels are highly cambered and have rounded leading

edges for increased leading-edge suction at cruise con-
ditions. The outer panels have sharp leading edges,

since their reduced sweep places them ahead of the
Mach cone at cruise conditions. Airfoil sections for

this configuration were derived by using an NACA
65-series thickness form with the camber determined

from supersonic linear theory design. The config-

uration has a "platypus" nose shape for additional

lift, and the wingtip has a curved planform based on
the concept for reducing pitch-up described in ref-
erence 5. The aft section of the fuselage and the
vertical tail are not included in the model to allow

for the sting mounting system. The model wing ref-

erence area is 175.84 in 2, the wingspan is 18.19 in.,

and the mean aerodynamic chord measures 15.66 in.

Coordinates for the wing airfoil sections are given in
table I.

A second model with a more conventional straight

wingtip was built to study the effect of tip shape

on the pitch-up and induced drag characteristics

for this type of aircraft. According to reference 5,

having a straight wingtip geometry in conjunction
with a highly swept wing should produce more pitch-

up and less induced drag than a similar wing with

a curved wingtip geometry. Figure 4 shows this

straight wingtip model installed in the 8-Foot TPT.

Figure 5 is a close-up comparison of the two wingtips.



The wingspanand areaare the samefor the two
configurations.

Thecurvedwingtipmodelwasinstrumentedwith
60flushpressureorificesof 0.020-in.insidediameter,
arrangedin 2 chordwiseand 4 spanwiserows,as
shownin figure6 andlistedin tableII. Thepressure
tubesexitedat themodelbaseandthenwererouted
aft alongthe sting. Tile straightwingtip model
wasnot pressureinstrumented.Both modelswere
fabricatedfrom7075aluminum.

Apparatus and Procedures

Facility

Theseinvestigationswereperformedin the8-Foot
TransonicPressureTunnelat the NASALangley
ResearchCenter. This facility is a variable-pressure

slotted-throat wind tunnel that permits independent
variations of Mach number, stagnation pressure, and

temperature. The test section is a 7.125-ft square

with filleted corners, giving a cross-sectional area

approximately equivalent to an 8-ft-diameter circle.

The floor and the ceiling are axially slotted, which

results in approximately 6.9-percent open area in the

calibrated test region. The sidewalls are solid and
fitted with windows for schlieren flow visualization.

Off-body flow visualization is obtained with a laser

vapor screen system designed for vortex-dominated

flow fields. A description of the tunnel and data
system is given in reference 9.

Tests

The present investigation was performed at Mach
numbers from 0.30 to 1.19. All data were taken at a

Reynolds number of 2.0 million per foot. The angle-

of-attack range was dependent on Mach number,
with a maximum variation of -4 ° to 18° occurring
at a Mach number of 0.30. Lateral-directional data

were obtained for sideslip angles from -7.5 ° to 5 ° .

Pressure data were obtained for the curved-tip
model only. A dummy balance was used for these

tests, since the model was too small for both a

balance and the number of pressure tubes installed.

This would have resulted in extensive fouling and
possible damage to a live balance. The pressure
tubes were later removed to allow force and moment

testing. Force and moment data were obtained for

both models over the entire test envelope. Both
models were tested with and without flow-through

nacelles mounted on the wing lower surface.

Although not presented in this report, off-body
flow visualization data were obtained at selected con-

ditions for the curved-tip model by using a laser light

sheet system. This was used primarily to study the

vortex patterns generated by the wing. Schlieren

photography was used at the supersonic Mach mlm-
bets to verify that the shock waves reflecting from

the tunnel walls were not impinging on the model.

Boundary-Layer Transition

Boundary-layer transition was fixed on the mod-

els by using transition strips composed of Carborun-

dum grains set in a plastic adhesive. The roughness

particle sizes and locations were selected according

to the method of reference 10. The strips were ap-

proximately 0.06-in-wide bands of No. 120 Carborun-

dum grains located 0.75 in. from tim nose. No. 90
Carborundum grains were located 0.75 in. aft and

perpendicular to the leading edge of the wing and

0.75 in. aft and perpendicular to the leading edge of

the nacelles. The grit was applied to both upper and

lower wing surfaces and both inner and outer nacelle
surfaces.

Measurements and Corrections

Aerodynamic forces and moments for the mod-

els were measured with an internally mounted six-

component strain-gauge balance. Model attitude was

set with an aecelerometer mounted on the sting sup-
port system. Output from the aceelerometer was

used in conjunction with the balance output to deter-

mine model attitude. For the ease where a dummy

balance was used, the following equation was solved

iteratively to determine model attitude:

where fl(a) and f2(a) are regression polynomials

for CN_ and Cm(,, respectively, which were deter-
mined when a balance was present, Os is the known

accelerometer angle, and [% and /c0 are nondimen-

sional bending coefficients from the dummy balance.

Flow angularity was determined by testing the

model in both upright and inverted positions. A
correction of 0.28 ° upwash was applied to the data

at ._/eo = 1.19. Corrections at other Mach numbers

were negligible. Balance forces were adjusted to a

condition of free-stream static pressure acting over

the sting cavity area. No corrections were applied

for internal drag of the flow-through nacelles. The

accuracy of the data, based on instrument accuracy

(0.5 percent of full-scale load on the balance), is
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estimatedto beasfollows:

CN = ±0.006

CA = +0.0009

Cm = +0.0008

Q = +0.0002

Cn = +0.0004

cr = +0.003

a = +0.01 °

¢ = +0.20 °

/_I0¢ = +0.001

Coefficient values are based on a conservative, nom-

inal dynamic pressure of 0.97 psi corresponding to
data for Moc = 0.30.

Presentation of Results

The remainder of this paper will present results

and analysis from the wind tunnel test. In order to

reduce the vohlme of this paper, only representative

results from tile wind tunnel test are presented.

Complete data are presented in reference 11.

Figures 7-10 show the longitudinal characteris-

tics of the straight and curved wingtip models with

nacelles on and off for all Mach numbers tested. Fig-
ures 11 and 12 show induced drag characteristics

of the models tested, again with and without na-

celles. Lateral-directional data are presented in fig-
ures 13 16. Finally, figures 17-19 show chordwise

and spanwise pressure distribution results for the

curved wingtip model with nacelles on and off.

Discussion of Results

Longitudinal Results

The effects of the wingtip geometry on lift can

easily be seen at all Mach numbers in figures 7 and 8.
Tile straight wingtip model consistently generated

slightly more lift than the curved wingtip model

at the higher angles of attack tested. Lift-versus-

drag curves for the two configurations were similar

at the lower Mach numbers, but indicated a slight
drag benefit for the straight wingtip model with

nacelles on at some of the higher Mach numbers

(see figs. 8(e) (g)). Pitching-moment characteristics
were similar only at the extreme lower angles of

attack tested. At all other angles of attack, pitch-

up occurred at higher lift coefficients and pitching

moment was reduced for the straight wingtip model

in comparison with the curved wingtip model.

The data indicate that the tip area of the curved

wingtip model has unloaded, resulting in lower lift co-

efficients and more pitch-up than seen for the straight

wingtip model. This may be due to differences in the

static aeroelastic deflections of the two wing shapes.
The curved-tip shape places more area aft of the wing

structural axis, increasing the nose-down torsional

load for this wing. This increased torsional moment

causes this wing to have more twist (washout) than

the straight tip wing, thus reducing the lift in this

region. To recover the lost lift, the configuration an-
gle of attack must be increased. As a result, the lift

distribution is shifted inboard and, because of the

sweep angle, forward on the curved-tip wing. This

forward movement of the resultant lift vector gives

the curved-tip model a more positive pitching mo-

ment than the model with the straight wingtip. This
effect is consistent with results shown in reference 12

for the static aeroelastic bending of swept wings on
combat aircraft.

Another possible cause of the wingtip unloading

can be gleaned from the aerodynamics of a vortex
dominated flow field. The vortex of the curved

wingtip is expected to be weaker because of the

increase in sweep (ref. 13) than the tip vortex of the

straight wingtip. The weaker vortex would result in

lower lift and therefore increased pitch-up at lower
lift coefficients, as seen in the data.

Figures 9 and 10 demonstrate the effects of the
flow-through nacelles on the longitudinal character-

istics of both models. When the nacelles were added,

lift increased, pitch-up occurred at higher lift coeffi-

cients, and pitching moment decreased. Drag also in-

creased at the lower angles of attack for M_c < 0.95.
At Moc _> 0.95, drag increased over the entire angle-

of-attack range. The increase in lift can be ex-

plained by looking at the pressure distributions in fig-
ures 17-19. Near the leading edge of the nacelles, the

velocity on the lower surface of the wing was reduced,

thus generating more positive pressures and, as a re-

sult, increased lift. As expected when a component
such as a nacelle is added to the configuration, there

is an increment in the drag coefficient at zero-lift con-

ditions due to the larger wetted area. However, this

increment disappears at higher angles of attack for
Moc < 0.95. This implies that the nacelles increase

the span efficiency at the conditions where the drag

increment disappears. Pitching-moment characteris-

tics also improve with the addition of nacelles. In
figure 3, it is clear that the nacelles extend well be-

yond the trailing edge of the wing. This aft location

of the nacelles effectively extends a portion of the

trailing edge of the wing and acts like a lifting sur-
face. Since this surface is aft of the balance moment



center,it wouldtend to decreasethe pitchingmo-
ment.A decreasein thepitchingmomentwouldalso
resultfromthedragof thenacellesactingthrougha
pointbelowthemomentreferencecenter.

Effectsofwingtipgeometryoninduceddragchar-
acteristicscanbeseenin figures11and12.Sincethe
Oswaldefficiencyfactore is proportional to the in-

verse of the slope of the curves in figures 11 and 12,

a smaller slope is desirable and indicates less in-

duced drag. For the conditions tested, the straight

wingtip model produced a smaller slope and there-

fore a greater span efficiency factor than the curved

wingtip model. The most significant difference in
the curves occurs at Moc -- 0.95 with the nacelles off

and between Moc = 0.80 and 0.95 with the nacelles

on. From tabulated data published in reference 11 at

Moc = 0.95, the span efficiency factor of the straight

wingtip model with nacelles off was 0.026 higher than
that of the curved wingtip model between angles of
attack of 3.0 ° and 6.4 ° . An increase of 0.031 in the

span efficiency factor for the straight wingtip model

as compared with the curved wingtip model was also

computed at Moc = 0.90 between angles of attack of
3.1 ° and 8.4 ° with the nacelles on. This was not an-

ticipated in reference 5, where the curved wingtip ge-
ometry was expected to exhibit better induced drag

and pitch-up characteristics.

Lateral-Directional Results

Lateral-directional data are presented in fig-

ures 13 and 14 for four of the Mach numbers tested.

All configurations were stable in yaw and roll at the
conditions tested. Wingtip geometry effects are very

small, as seen in figure 13. The most significant dif-
ference occurs in the side-force coefficient between

angles of attack of 4° and 8 ° at the lower Mach
numbers tested. This angle-of-attack region is where

leading-edge separation and the resultant vortex for-

mation on the highly swept portion of the wings is

expected to develop. At all Mach numbers in this

angle-of-attack region, the straight wingtip model
has a slightly greater side-force coefficient. Asym-

metry in the data, especially seen at ]t,/_ = 0.30, is

probably due to errors in setting the model correctly
at zero sideslip and asymmetry in the model itself.

Effects of the nacelles on lateral-directional char-

acteristics of the curved wingtip model can be seen in

figure 14. At all Mach numbers the nacelles simply

increased the magnitude of the lateral-directional co-

efficients by a nearly constant amount over the range

of angles of attack tested.

Lateral-directional data are presented in deriva-

tive form in figures 15 and 16 for four of the

Mach numbers tested. Derivatives were computed

at sideslip angles of 0 ° and 5° . These figures have
been drawn on the largest scale possible where dif-
ferences in the curves could still be seen. As a result,

the error in the data is greater than the symbol size;

however, the trends seen are consistent and worth

noting.

From figure 15 it is clear that notable differences
in the results obtained with the two wingtip geome-

tries occur at higher angles of attack. The differ-

ences show the curved wingtip model with slightly

increased stability at higher angles of attack. The

higher sweep of this wingtip at sideslip conditions

may weaken the vortical forces and delay vortex

burst, thus improving stability.

The changes seen in the slopes of the side-force

and yawing-moment derivatives for both wings cor-

respond to two test conditions where the physical
characteristics of the flow are changing with angle of

attack. The equation for angle of attack normal to

the leading edge is given by

tan
c_n = tan -1 -

cos A

Therefore, at a given model angle of attack and

sideslip angle, the sweep of the windward wing is
reduced and the angle of attack normal to the lead-

ing edge is also reduced. Similarly, the sweep of the

leeward wing increases, thereby increasing the angle
of attack normal to the leading edge. As a result,

leading-edge separation should occur first on the lee-
ward wing at a given model angle of attack. With

this information, the first slope change most likely

corresponds to the condition where leading-edge sep-
aration on the highly swept portion of the leeward

wing Occurs. The second slope change would be con-
sistent with leading-edge separation on the highly

swept portion of the windward wing. These physical

changes occur for all configurations at all subsonic
Mach numbers.

Prom figure 16 the effects of the nacelles on the
flow for the curved wingtip model can readily be seen.

An incremental change is produced by the nacelles,

resulting in more positive yaw derivatives and more

negative roll and side-force derivatives.

Pressure Data Results

Figures 17 through 19 show chordwise and span-

wise pressure distribution results for three selected
Mach numbers at several angles of attack for the

curved wingtip model with nacelles on and off. In
some cases data were not taken precisely at the same
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angleof attackwith nacellesonand off. This is a
resultof not havinga balancepresentandhavingto
relyoil themethoddescribedpreviouslyin the"Mea-
surementsandCorrections" section to determine an-

gle of attack. Such differences, if any, arc noted in

tlle figures. Subsonically, pressure coefficient levels at

each of the chordwise and spanwise locations tended

to increase with Mach number for a fixed angle of at-
tack. Also, vortex development at a constant Mach

number can be seen at tile spanwise stations as angle
of attack increases. This is indicated by the pres-

sure peaks on the upper surface near r_ = 0.6 (see
figs. 17(c) (e), for example). This development oc-
curs at all Mach numbers.

The only significant change in the pressure dis-
tributions due to the presence of nacelles occurred
at B.L. 6.040 and M.S. 20.670 at all Mach numbers

(figs. 17 19). At B.L. 6.040, which is outboard of

the nacelles, pressure coefficients on tile upper sur-

face of the wing are more negative when nacelles
are present. Tile increase in lift caused by the na-

celles apparently produced an increase in upwash

on the outer portion of the wing. At M.S. 20.670
(figs. 1_19) the effects of the nacelles on the lower

surface of the wing can be clearly seen. As described

previously, the nacelles have slowed the flow oil the
lower surface, resulting in more positive pressures

and an increase in lift. Again, this effect can be seen

at all Mach numbers and angles of attack.

Concluding Remarks

An aerodynamic data base was created for as-

sessing the applicability of various levels of computa-
tional methods to analyze high-speed civil transport

(HSCT) configurations. This was accomplished by

testing two generic HSCT models in the Langley 8-
Foot Transonic Pressure Tunnel. The two models dif-

fered geometrically only in tile wingtip region, where

one model had curved wingtips and the second had

straight wingtips. Force and pressure data were ob-

tained on the curved wingtip model, and force data
only were obtained on the straight wingtip model
from Mach 0.30 to 1.19. Both models were tested

with flow-through engine nacelles on and off. Data

obtained can be used to assess the accuracy of var-
ious levels of computational analysis on an HSCT

configuration.

Test results indicate that for a given angle of at-
tack the straight wingtip model produced slightly

higher lift coefficients at the higher angles of attack

tested and for a given lift coefficient, less pitching

moment. The straight wingtip model also gener-

ated less induced drag. Pitch-up also occurred at

higher lift coefficients for the straight wingtip config-
uration. Data also indicate that adding nacelles to

the lower surface of the wings increased lift, increased
span efficiency, and improved lateral-directional sta-

bility. Pressure data obtained on the curved wingtip
model indicated more negative pressure coefficient
levels with increased subsonic Math mlmber and indi-

cated vortical flow development as angle of attack in-
creased. Pressure coefficients also indicated increased

loading on the outer wing panel due to the presence
of the nacelles.

NASA Langley Research Center
Hampton, VA 23681-0001
July 27, 1992
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Table I. Wing Definition

(a) y = 0.900 in.; c -- 23.134 in.; M.S. at L.E. ---- 1.963 in.; r = 0.00567 in.

Upper surface Lower surface

x, in. z, in. z, in.
0.000000

1.535218
1.621048

1.923880

2.902939

4.359268
5.676326

6.643123

7.863940

8.281753
9.016973

10.107080

11.162483
12.180408

13.160857

14.086013

14.883234

15.804919
16.946152

18.293055

19.009071

19.728561
20.890383

21.981417

22.553770
23.134680

0.311864

-.346691
-.352843

-.375728

.452498
-.575437

.682707

-.757530

.849977

.879993
-.929336

.993679

-1.046540
-1.094475

-1.135928

-1.174906
-1.202767

1.231405

1.266037

-1.296420

-1.310433
1.322496

-1.337642

-1.350464

-1.356110
1.362099

-0.311863
-.346691

.352842

-.375727
-.452497

-.575437

-.682706
-.757530

-.849977

-.879992

.929335

-.993679

-1.046539
-1.094474

-1.135927

-1.174906
-1.202767

-1.231404

-1.266037

-1.296420

-1.310432
-1.322496

-1.337641

-1.350463
1.356110

1.362098
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TableI. Continued

(b) y = 1.120 in.; c -- 22.037 in.; M.S. at L.E. = 3.061 in.; r = 0.00547 in.

Upper surface Lower surface

x, in. z, in. z, in.

0.000000
1.462362

1.544118

1.832580

2.765178

4.152395
5.406950

6.327868

7.490749

7.888734

8.589064
9.627437

10.632756

11.602375

12.536294

13.417546

14.176935

-0.430451

--.414520

-.418280
-.433923

-.488388

-.588532

-.686525

-.758203

---.839014
-.865172

-.910249

-.973696

-1.028544

-1.075686
-1.116707

-1.152331

-1.179915

-0.430451

-.414520

-.418280

-.433923

-.488388
-.588532

.686525

-.758203

-.839014

-.865172
-.910249

-.973696

-1.028544

1.075686

1.116707
-1.152331

-1.179915

15.054880

16.141956

17.424938
18.106977

18.792322

19.899010

20.938267
21.483454

22.036798

1.209469
1.241468

1.273830

1.288760

1.302483
1.322617

1.339781

1.348441

1.357116

1.209469
1.241468

1.273830

1.288760

1.302483

1.322617

1.339781
1.348441

1.357116



TableI. Continued

(c) y = 1.800 in.; c = 17.941 in.; M.S. at L.E. ----7.157 in.; r = 0.00558 in.

X_ in,

0.000000

1.190546

1.257107

1.491950
2.251201

3.380570

4.401935
5.151678

6.098410

6.422420
6.992576

7.837941

8.656398
9.445789

10.206117

10.923566

11.541801

12.256561

Upper surface

Z, in.

-0.546906

-.512697
-.513467

-.517694

-.538320

-.589818
-.647328

-.694195

.756497

-.778284
-.816832

-.874076
-.928197

-.979066

1.026524

1.069717

1.104819
-1.143514

Lower surface

z, in.
0.546906
-.512697

-.513467

-.517694
-.538320

-.589818

-.647328

-.694195
-.756497

-.778284

-.816832

-.874076
-.928197

-.979066

-1.026524

-1.069717
1.104819

-1.143514

13.141579

14.186085

14.741351
15.299308

16.200291

17.046375

17.490229

17.940720

1.187968

1.235363
1.257991

1.278357

1.306551

1.329233

1.340301

1.351618

-1.187968

1.235363
1.257991

1.278357

1.306551

1.329233

1.340301

1.351618
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TableI. Continued

(d) y = 2.400 in.; c = 14.912 in.; M.S. at L.E. = 10.202 in.; r = 0.00397 in.

Upper surface Lower surface

x, in. z, in. _.. z, in.
0.000000

.989539

1.044862

1.240055
1.871118

2.809808

3.658731

4.281889

5.068778
5.338083

5.811977

6.514616

7.194885

7.851000
8.482956

9.079275

9.593131

10.187213
10.922805

11.790964

12.252480
12.716233

13.465097

14.168332

14.537248

14.911679

-0.786224

-.724401

-.723093
-.719749

-.718416

-.735016

-.763328

-.789027

-.827170
-.841295

-.866823

-.906092

-.945457

.984014
1.021177

1.055918

1.085624

1.119242
-1.159812

1.205435

1.228595

1.250157

1.282096
1.309932

1.324489

1.338683

0.786224

-.724401

-.723093

-.719749
-.718416

-.735016

-.763328

-.789027

.827170
-.841295

-.866823

-.906092

-.945457
-.974014

1,021177

1.055918

-1.085624

-1.119242

--1.159812
1.205435

1.228595

1.250157

1.282096
1.309932

1.324489

1.338683
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TableI. Continued

(e) y -- 3.240 in.; c = 10.760 in.; M.S. at L.E. = 14.721 in.; r = 0.00332 in.

Upper surface Lower surface

x, in. z, in. z, in.
0.000000

.714052

.753973

.894824

1.350200

2.027560

2.640143
3.089814

3.657635

3.851965
4.193927

4.700951

5.191835
5.665288

6.121308

6.551611

6.922411

7.351100
7.881905

8.508368

8.841399
9.176044

9.716425

10.223880

10.490089

10.760280

-0.975824

.916581

-.914493
.908005

-.894812

.887991

.888338

.894011
-.906314

.911425

.920980

.937589
-.955338

.974284

-.993921

-1.012989
-1.029730

-1.049372

-1.073995
-1.102027

-1.117642

-1.132790
1.154786

-1.174958

-1.185916

-1.196411

-0.975824

.916581

-.914493
.908005

-.894812
-.887991

.888338

.894011

.906314

.911425
.920980

.937589

-.955338
.974284

-.993921

-1.012989

-1.029730
1.049372

1.073995

-1.102027

-1.117642
1.132790

-1.154786

-1.174958

-1.185916

-1.196411
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TableI. Continued

(f) y = 4.104 in.; c = 6.642 in.; M.S. at L.E. = 19.240 in.; r = 0.00346 in.

Upper surface Lower surface

x, in. z, in. z, in.
0.000000

.440755

.406540

.552338

.833423

1.251529

-1.079943

-1.042277
-1.040644

-1.033818

-1.017775

-1.004517

-1.079943
-1.042277

-1.040644

-1.033818

-1.017775

-1.004517

1.629652

1.907216
2.257708

2.377661

2.588740

2.901704

3.204707
3.496950

3.778433

4.044043

4.272921

4.537534
4.865177

5.251867

5.457434
5.663997

5.997551

6.310782

6.475102

6.641880

-.997975

-.994311
-.991025

-.990354

-.988796

-.986524

-.984991
-.985023

-.984204

-.984628

-.984003

-.984176
-.984563

-.985937

-.987515
-.988237

-.986773

-.988488

-.989948

-.990961

-.997975

-.994311
-.991025

-.990354

-.988796

-.986524

-.984991
-.985023

.984202

-.984628

.984003

-.984176

.984563

.985937

--.987515
.988237

-.986773

.988488

.989948

-.990961
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TableI. Continued

(g) y = 4.800 in.; c = 5.678 in.; M.S. at L.E. = 20.560 in.; r = 0.00553 in.

Upper surface Lower surface

x, in. z, in. z, in.
0.000000

.376787

.397852

.472176

.712465

1.069890

1.393134
1.630415

1.930038

2.032582

2.213026
2.480569

2.739596

2.989424

3.230056
3.457115

3.652776

3.878984

4.159077
4.489645

4.665377

4.841960

5.127104
5.394876

5.535348

5.677920

-0.960001

.956774

.956601

.955991

.954169

-.952149
.95O571

.949428

.947958

.947398

.946437
.945185

.944218

-.943491

--.942941
.942579

.942317

.942239

--.942296
-.942122

.942043

.942076

.94237O

.942948

-.943348

.943987

0.960001

-.956774

-.956601

-.955991
-.954169

-.952149
-.950571

-.949428

-.947958

-.947398

-.946437
-.945185

-.944218

-.943491

-.942941
-.942579

-.942317

-.942239

-.942296
-.942122

-.942043

-.942076

-.942370
-.942948

-.943348
-.943987
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TableI. Continued

(h) y = 6.360 in.; c = 4.278 in.; M.S. at L.E. = 22.773 in.; r = 0.00000 in.

Upper surface Lower surface

x, in. z, in. z, in.
0.000000

.283904

.299777

.355778

.536833

.806149

1.049708

1.228496
1.454260

1.531524

1.667486

1.869078

2.064251
2.252494

2.433805

2.604892

2.752320

2.922765
3.133811

3.382890

3.515301

3.648355
3.863208

4.064970

4.170814

4.278240

-0.780487

-.789043

-.789504
-.791107

-.796067

-.802859

-.808570

-.812596
-.817391

-.818926

-.821613

-.825291
-.828544

-.831316

-.833680

.835729

-.837137

-.838348

-.839608
-.84O662

-.840864
-.841044

-.841375

-.841719

-.841962

.841948

-0.780487

-.789043

.789504
-.791101

.796067

-.802859

-.808570

-.812596
-.817391

-.818926

-.821613

-.825291
-.828544

-.831316

-.833680

-.835729

-.837137

-.838348
-.839608

-.840662

-.840864
.841044

-.841375

.841719

-.841962
-.841948
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TableI. Continued

(i) y = 8.160 in.; c = 3.032 in.; M.S. at L.E. = 25.259 in.; r = 0.00000 in.

x, in.
0.000000

.201191

.212438

.252125

.380430

.571282

.743882

.870581

1.030570
1.085323

1.181675

1.324533
1.462843

1.596242

1.724730

1.845972

1.950448

2.071235
2.220793

2.397305

2.491139
2.585428

2.737685

2.880665

2.955672

3.03180O

Upper surface

z, in.
-0.672000

-.674608

.674765

-.675314
-.677045

.679462

-.681484

.682988

.684823

-.685471

-.686476
.688090

.689624

-.690966
-.69180O

-.692652

-.693475

-.694147

-.694395

-.694966
.695303

.695358

.695064

--.694782
-.695013

-.695586

Lower surface

z, in.
0.672000

-.674608

-.674765

.675314
-.677045

.679462
-.681484

.682988

-.684823

.685471
-.686476

.688090

-.689624
.690966

.691800

-.692652

.693475

.694147

.694395

.694966

-.695303

.695358

.695064

.694782

-.695013

-.695586
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TableI. Continued

(j) y = 8.640 in.; c = 2.572 in.; M.S. at L.E. = 26.357 in.; r = 0.00000 in.

Upper surface Lower surface

x, in. z, in. z, in.
0.000000

.170683

.180226

.213894

.322745

.484657

.631086

.738572

.874302

.920753

1.002494

1.123691

1.241029

1.354200
1.463204

1.566062

1.654697
1.757168

1.884049

2.033795

2.113400
2.193393

2.322563

2.443862

2.507495

2.572080

-0.707999

-.708033

-.708040

-.708064
-.708144

-.708233

-.708423

-.708651
-.708896

-.709031

-.709292

-.709704

-.710116

-.710559
-.710989

-.711366

-.711658

-.712090
-.712637

-.713017

-.713093
-.713105

-.713052

-.712963

-.712874

-.712748

-0.707999

-.708033

-.708040

-.708064
-.708144

-.7O8233

-.708423

-.708651
-.708896

-.709031

-.709292

-.709704

-.710116

-.710559
-.710989

-.711366

-.711658
-.712O9O

-.712637

-.713017

-.713093
-.713105

-.713052

-.712963

-.712874

-.712748
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TableI. Concluded

(k) y -- 9.036 in.; c = 1.008 in.; M.S. at L.E. = 28.608 in.; r = 0.00000 in.

x, in.

0.000000

.066890

.070631

.083825

.126484

.189937

.247322

.289447

.342640

.360844

.392878

.440375

.486360
.530712

.573431

.613741

.648476

.688636

.738360

.797046

.828244

.859592

.910214

.957751

.982690

1.008000

Upper surface

z, in.
0.723127

.722951

.722941

.722906

.722794

.722627

.722475

.722365

.722225

.722177

.722092

.721967

.721846

.721730

.721617

.721511

.721419

.721313

.721182

.721028

.720946

.720863

.720730

.720605

.720539

.720473

Lower surface

z, in.
0.723127

.722951

.722941

.722906

.722794

.722627

.722475

.722365

.722225

.722177

.722092

.721967

.721846

.721730

.721617

.721511

.721419

.721313

.721182

.721028

.720946

.720863

.720730

.720605

.720539

.720473

18



TableII. PressureOrificeLocations

Orifice x, in. y, in. Orifice x, in. y, in.

CP1
CP2

CP3

CP4

CP5

CP6

CP7

CP8
CP9

CPIO

CPll

CP12
CP13

CP14

CP15

CP16

CP17
CP18

CP19

CP20

CP21

CP22
CP23

CP24

CP25
CP26

CP27

CP28

CP29

CP30

CP32

CP33

8.875 0.000

8.875 .352

8.875 .705

8.875 1.057

8.887 1.409

8.875 1.762

8.875 2.114
10.560 2.114

12.245 2.114

13.930 2.114

CP34

CP35

CP36

CP37
CP39

CP40

CP41

CP42
CP43

CP44

20.670

20.670

20.670
20.670

23.000

23.473

23.945

24.419
24.892

25.366

15.615

15.615
15.615

15.616

15.615

15.615

15.615

15.615
15.615

15.615

15.615

17.300

18.985
20.670

20.670
20.670

20.670

20.670

20.670

20.670

20.670

2O.67O

.000

.352

.705

1.057

1.409

1.762
2.114

2.466

2.818

3.170

3.303
2.114

2.114

.000

.352

.705

1.057

1.409

1.762

2.114

2.818

3.170

*CP45

*CP46

*CP47

*CP48

*CP49
*CP50

*CP5I

*CP52

*CP53
*CP54

*CP55

*CP56

*CP57

*CP58
*CP59

*CP60
*CP61

CP62

CP63

CP64
CP65

20.670

20.670

20.670

20.670
20.670

20.670

23.000

23.000

23.000
23.000

23.000

23.000

23.000

23.000
23.000

23.000

24.000
26.000

26.000

26.000
26.000

3.522

3.874
4.226

4.578

6.040

6.040

6.040
6.040

6.040

6.040

-1.410

-1.762
-2.114

-2.466

-2.818

-4.000

-3.800

-3.600
-3.400

-3.200

-3.000

-1.200
-1.000

-.800

-.600
-.400

-2.060

.000

tmin

in ax

.000

*Lower surface orifices.

tMinimum vertical distance.

SMaximum vertical distance.
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ORIGINAL PAGE

,.3LACK AND WHITE PHOTOGRAPN

I
M.S. 19.304

Figure 1. Curved wingtip model.

L M.S. 26.500

B.L. 9.097

L-90-2745

Figure 2. Curved wingtip model installed in Langley 8-Foot Transonic Pressure Tunnel.

20



ORIGINAL P,:_,3E

A,,_U WHITE PHOTOGRAPHBLACK "_

.... :: ===................................................

L-90-02749

Figure 3. Curved wingtip model, inverted, in Langley 8-Foot Transonic Pressure Tunnel.

Figure 4. Straight wingtip model in Langley 8-Foot Transonic Pressure Tunnel.

L-90-01304
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Figure 5. Comparison of curved and straight wingtips.

B.L.

11 M.S. 23.000

12 . M.S. 20.670

55

62

8

56

10

26

27

6.040 37

39

Figure 6. Pressure orifice arrangement for the curved wingtip model.
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Figure 11. Induced drag characteristics. Nacelles off.

63



C D

Wingtip Nacelles

Straight Off

Curved Off

CL 2

(b) M_c = 0.60.

Figurc 11. Continued.
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Figure 12. Induced drag characteristics. Nacelles on.
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Figure 13. Lateral characteristics of the straight and curved wingtip models with nacelles on.
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Figure 13. Continued.
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Figure 13. Continued.
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